- Piercing through the Clouds of Venus with Arecibo Radar17 Aug, 2022
- American Astronomical Society’s 240th Meeting: Plenary Lecture Building the Future of Radio Science with the Arecibo Observatory by Dr. Héctor Arce. 28 Jul, 2022
- TRENDS 202227 Jul, 2022
- Advancing IDEA in Planetary Science 27 Jul, 2022
- The Arecibo Observatory: An Engine for Science and Scientists in Puerto Rico and Beyond27 Jul, 2022
- Cryogenic Frontend work for the 12m telescope entering phase II21 Jul, 2022
- A Parkes “Murriyang” Search for Pulsars and Fast Transients in the Large Magellanic Cloud 11 Jul, 2022
- A Comparison of Multiphase Magnetic Field Tracers in a High Galactic Latitude Region of the Filamentary Interstellar Medium 11 Jul, 2022
- The First Observation of Additional Ionospheric Layers Over Arecibo Using an Incoherent Scatter Radar11 Jul, 2022
- Decoding the star forming properties of gas-rich galaxy pairs11 Jul, 2022
- Crater Ejecta Across Maxwell Montes, Venus, and Possible Effects on Future Rock Type Measurements 11 Jul, 2022
- On Single-pulse Energies of Some Bright Pulsars Observed at 1.7 GHz11 Jul, 2022
- Probing the Local Interstellar Medium with Scintillometry of the Bright Pulsar B1133 + 16 11 Jul, 2022
- Arecibo Celebrates National Engineers Week 06 Apr, 2022
- The Arecibo Observatory at the Upcoming 240th American Astronomical Society Meeting06 Apr, 2022
- The Arecibo Observatory Survey Salvage Committee Report06 Apr, 2022
Gaia Weighs in on the Pleiades Distance Controversy
Byadmin27 January 2017 Astronomy
Distance is one of the most challenging properties to measure in astronomy – it is bootstrapped from nearby objects like the Sun and planets all the way out to galaxies and quasars. The Pleiades, a nearby star cluster, had served as a cornerstone for astronomical distance derivations and set the scale for other clusters. Results from various ground-based techniques all agreed that the distance was about 133 parsecs, making the Pleiades a solid rung on the lower end of the “Cosmic Distance Ladder.” This important role was called into question by results from the parallax satellite, Hipparcos, the gold standard of distance measurements. The distance measured by Hipparcos is 120.2 ± 1.5 parsecs, significantly and disturbingly different from traditional ground-based values and setting up the so-called “Pleiades distance controversy.” Although this amounts to only a 10% difference in the distance, the result propagates through the system and affects the size, age, and physics of the universe and objects in the universe. This disagreement led to significant shifts in the cosmic distance scale and controversial revisions of physical models required to obtain the Hipparcos result. To resolve this controversy, a multi-year VLBI observing campaign using the High Sensitivity Array was conducted to derive a new independent, distance to the Pleiades. The first four parallax results derived from these measurements determined a distance to the Pleiades of 136.2 ± 1.2 pc (see Figure). This determination is in line with the original results from ground-based measurements, but incompatible with that suggested by Hipparcos (Melis et al. 2014). Now the Gaia mission, Hipparcos’s successor, has made an initial measurement of 134 ± 6 pc, consistent with the Arecibo VLBI result (Gaia Collaboration 2016).
Summary of Pleiades distances from different measurements, showing 1σ errors. The VLBI result, which uses Arecibo (red), is the most accurate determination to date and is consistent with previous ground-based measurements (black). The Hipparcos results (blue) set up the controversy, but the new measurements from Gaia (green) confirm those of Arecibo VLBI (Figure adapted from Melis et al. 2014).
When an observing program requires the detections of weak signals to resolve a fundamental astronomical controversy, there is no substitute for the collecting area of the Arecibo Observatory.
Arecibo is an essential component of the High Sensitivity Array; its unparalleled collecting area is required to detect the weak double and triple radio star systems and decouple their proper motion from their orbital motion. The resolution of the Pleiades distance controversy would not have been possible without Arecibo.
Paper Reference: 2014, Science, 345, 1029 http://science.sciencemag.org/content/345/6200/1029
Title: Gaia Data Release 1: Summary of the Astrometric, Photometric, and Survey Properties
Authors: Gaia Collaboration
Paper Reference: Astronomy & Astrophysics no. aa29512-16, Sep 2016 http://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/201629512
Title: A VLBI Resolution of the Pleiades Distance Controversy
Authors: Melis, Reid, Mioduszewski, Stauffer, Bower